Data envelope fitting with constrained polynomial splines

نویسندگان

  • Abdelaati Daouia
  • Hohsuk Noh
  • Byeong U. Park
چکیده

Estimation of support frontiers and boundaries often involves monotone and/or concave edge data smoothing. This estimation problem arises in various unrelated contexts, such as optimal cost and production assessments in econometrics and master curve prediction in the reliability programs of nuclear reactors. Very few constrained estimators of the support boundary of a bivariate distribution have been introduced in the literature. They are based on simple envelopment techniques which often suffer from lack of precision and smoothness. Combining the edge estimation idea of Hall, Park and Stern with the quadratic spline smoothing method of He and Shi, we develop a novel constrained fit of the boundary curve which benefits from the smoothness of spline approximation and the computational efficiency of linear programs. Using cubic splines is also feasible and more attractive under multiple shape constraints; computing the optimal spline smoother is then formulated into a second-order cone programming problem. Both constrained quadratic and cubic spline frontiers have a similar level of computational complexity to the unconstrained fits and inherit their asymptotic properties. The utility of this method is illustrated through applications to some real datasets and simulation evidence is also presented to show its superiority over the best known methods. AMS 2000 subject classification: 62G05, 62P20, 62P30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Fitting Scattered Data on Sphere-like Surfaces Using Spherical Splines

Spaces of polynomial splines deened on planar triangulations are very useful tools for tting scattered data in the plane. Recently, 4, 5], using homogeneous polynomials, we have developed analogous spline spaces deened on triangulations on the sphere and on sphere-like surfaces. Using these spaces, it is possible to construct analogs of many of the classical interpolation and tting methods. Her...

متن کامل

A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere

We present the details of a multi-resolution method which we proposed in Taormina in 1993 (see [6]) which is suitable for fitting functions or data on the sphere. The method is based on tensor products of polynomial splines and trigonometric splines, and produces surfaces which are tangent plane continuous. The result is a convenient compression algorithm for dealing with large amounts of data ...

متن کامل

Fitting Scattered Data on Sphere - LikeSurfaces using Spherical

Spaces of polynomial splines deened on planar triangulations are very useful tools for tting scattered data in the plane. Recently, 4, 5], using homogeneous polynomials, we have developed analogous spline spaces deened on triangulations on the sphere and on sphere-like surfaces. Using these spaces, it is possible to construct analogs of many of the classical interpolation and tting methods. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014